钯氧化铝生产厂家

magjs 钯氧化铝生产厂家已关闭评论28 次浏览阅读模式

乙二醇的工艺条件?

主要的煤制乙二醇工艺是“草酸酯法”,即以煤为原料,通过气化、变换、净化及分离提纯后分别得到CO和H2,其中CO通过催化偶联合成及精制生产草酸酯,再经与H2进行加氢反应并通过精制后获得聚酯级乙二醇的过程。

以惠生工程和天津大学共同研发的合成气制乙二醇技术为例,国内合成气制乙二醇技术主要包括以下特点及优势:

拥有完整的物性数据库

a. 通过实验获得煤制乙二醇中涉及的非常见物质如亚硝酸酯、草酸酯的物化性质、热力学参数、溶解度、交互作用参数等重要物性数据;

b. 在草酸酯、碳酸酯、甲醇以及乙二醇、1,2-丁二醇等分离过程中的二元及多元交互参数;

拥有核心催化剂

a. 两代草酸酯合成催化剂:

第一代传统颗粒型氧化铝负载的钯系催化剂(工业使用催化剂),钯负载量为0.6%wt左右,草酸酯选择性高达98.5%,催化剂时空收率大于700g/Lcat/h,寿命超过2年;

第二代整体型钯系催化剂,在保证催化剂性能的同时,钯负载量仅为0.15%wt,催化剂床层阻力大幅降低;

b. 草酸酯加氢催化剂:

高活性、高选择性、高稳定性的Cu/SiO2催化剂原粉的工业规模制备;

第一代片状加氢催化剂,具有高强度、高稳定性的特点;

第二代条形加氢催化剂(工业使用催化剂),经过4700小时寿命评价,催化剂草酸酯转化率100%,乙二醇选择性大于95%,时空收率大于300g/Lcat/h,起始温度185℃,平均温升频率在1.5℃/月,最高反应温度可达245℃,预计寿命超过1.5年。

第三代整体型加氢催化剂进一步消除外扩散影响,催化剂活性及稳定性均大幅优于第二代条形加氢催化剂。

c. 上述催化剂均以实现工程放大制备及生产,拥有百吨级催化剂生产线1条;

加氢的加氢催化剂?

主要有四类:

①金属催化剂,常用的是第八族过渡元素,如骨架镍、镍-硅藻土、铂-氧化铝、钯-氧化铝等。这类催化剂活性高,几乎可用于所有官能团的加氢。

②金属氧化物催化剂,如氧化铜-亚铬酸铜、氧化铜-氧化锌、氧化铜-氧化锌-氧化铬、氧化铜-氧化锌-氧化铝等,主要用于醛、酮、酯、酸以及一氧化碳等化合物的加氢。

③金属硫化物催化剂,如镍-钼硫化物、钴-钼硫化物、硫化钨、硫化钼等,通常以γ-氧化铝为载体,主要用于含硫、含氮化合物的氢解反应,部分硫化的氧化钴-氧化钼-氧化铝催化剂常用于油品的加氢精制。

④络合催化剂,如RhCl[P(C6H5)3]3,主要用于均相液相加氢。

钼催化剂是危化品吗?

石油化工产品生产中的化学加工过程中,催化剂的品种繁多,按功能主要有氧化催化剂,加氢催化剂,脱氢催化剂,氢甲酰化催化剂,聚合催化剂,水合催化剂,烷基化催化剂,异构化催化剂,岐化催化剂等,有的是危化品,有的不是危化品,一般地用钯,铂,镍,钴,钼等载于氧化铝上,它们不是危化品。

煤制乙二醇的核心技术工艺?

主要的煤制乙二醇工艺是“草酸酯法”,即以煤为原料,通过气化、变换、净化及分离提纯后分别得到CO和H2,其中CO通过催化偶联合成及精制生产草酸酯,再经与H2进行加氢反应并通过精制后获得聚酯级乙二醇的过程。

以惠生工程和天津大学共同研发的合成气制乙二醇技术为例,国内合成气制乙二醇技术主要包括以下特点及优势: a. 通过实验获得煤制乙二醇中涉及的非常见物质如亚硝酸酯、草酸酯的物化性质、热力学参数、溶解度、交互作用参数等重要物性数据; b. 在草酸酯、碳酸酯、甲醇以及乙二醇、1,2-丁二醇等分离过程中的二元及多元交互参数; a. 两代草酸酯合成催化剂: 第一代传统颗粒型氧化铝负载的钯系催化剂(工业使用催化剂),钯负载量为0.6%wt左右,草酸酯选择性高达98.5%,催化剂时空收率大于700g/Lcat/h,寿命超过2年; 第二代整体型钯系催化剂,在保证催化剂性能的同时,钯负载量仅为0.15%wt,催化剂床层阻力大幅降低; b. 草酸酯加氢催化剂: 高活性、高选择性、高稳定性的Cu/SiO2催化剂原粉的工业规模制备; 第一代片状加氢催化剂,具有高强度、高稳定性的特点; 第二代条形加氢催化剂(工业使用催化剂),经过4700小时寿命评价,催化剂草酸酯转化率100%,乙二醇选择性大于95%,时空收率大于300g/Lcat/h,起始温度185℃,平均温升频率在1.5℃/月,最高反应温度可达245℃,预计寿命超过1.5年。第三代整体型加氢催化剂进一步消除外扩散影响,催化剂活性及稳定性均大幅优于第二代条形加氢催化剂。c. 上述催化剂均以实现工程放大制备及生产,拥有百吨级催化剂生产线1条; a. 更高的草酸酯合成工艺压力,降低系统体积;草酸酯合成循环过程操作弹性大,亚硝酸酯回收率高达95%,NO补充量低;采用NO直接补充,过程更加稳定,副产硝酸钠,无废水排放; b. 独有的低能耗聚酯级乙二醇产品分离方案:采用组分切割方式,仅使用4塔精馏即可获得聚酯级乙二醇产品,较传统乙二醇分离方案节能20%以上; c. 更宽的原理规格要求:对于进料CO和H2要求更宽,浓度超过98%即可,对CO中CO2、CH4、N2,对H2中CO、CO2、CH4、N2均不做要求; d. 草酸酯合成工艺路线产品多元化及草酸酯下游产品开发:目前正在开发的及已经开发成功的煤制乙二醇相关产品及工艺路线包括煤制燃料乙醇、合成草酸、碳酸二甲酯、碳酸二苯酯等; e. 完备的分析监测方案:实现在线监测与工艺控制过程相结合,确保工艺稳定性的同时降低操作人员数量,避免人为操作失误带来的潜在危险。天津大学拥有1批从实验室到中试再到示范工程的工程技术人员,可为企业提供详细而又安全的开车指导及技术支持服务; 惠生工程凭借其在EPCM以及生产方面的丰富经验能够提供业主完善的工程领域相关的服务以及煤气化、净化、分离部分的生产培训; 拥有千吨级及万吨级装置基地作为煤制乙二醇核心技术的培训基地。自1987年开始长期连续的煤制乙二醇及相关基础研究工作,完备的从实验室小试、吨级模试、百吨级中试到万吨级示范工程的工程放大过程研究; a. 国家九五科技攻关项目; b. 国家十一五科技支撑项目; c. 千吨级黄磷尾气生产草酸酯、草酸、乙醇项目; d. 万吨级合成气制乙二醇项目; 已经获得的在催化剂、工艺、分离及相关技术方面的授权专利19项,PCT国际专利3项; 由CO气相偶联合成草酸酯的规整催化剂及其制备方法,ZL2010 用于草酸酯加氢制乙二醇的规整结构催化剂及其制备方法,ZL2010 CO低压气相合成草酸酯的催化剂及其制备方法 ,ZL2007 CO偶联制备草酸酯的方法 ZL2007 草酸酯加氢合成乙二醇的催化剂及其制备方法,ZL 2007 气相法CO偶联再生催化循环制草酸酯 ,ZL96109811.2 用于醋酸酯加氢制乙醇的催化剂及其制备方法,ZL2012 醋酸酯加氢制乙醇的方法, ZL2012 用于草酸酯加氢制乙醇的催化剂及其制备方法与应用,ZL2011 制备甲基苯基草酸酯和草酸二苯酯的方法,ZL02129213.2 负载型金属氧化物催化合成甲基苯基草酸酯和草酸二苯酯,ZL02129212.4 以草酸酯和苯酚合成草酸二苯酯的方法,ZL2005

高压灯泡里面有贵金属吗?

高压灯泡不含贵金属。

高压钠灯含有钨丝。电弧管是高压钠灯的关键部件,电弧管是把电极、多晶氧化铝陶瓷管、帽、焊料环装配在一起,加入钠汞进入封接炉封接而成;其中电极是用高纯钨丝绕成螺旋状,在螺旋孔中插入芯杆,浸渍电子粉,然后将电极芯杆一端和铌管封闭端焊接成一体。所以高压钠灯含钨。

贵金属主要指金、银和铂族金属(钌、铑、钯、锇、铱、铂)等8种金属元素。这些金属大多数拥有美丽的色泽,具有较强的化学稳定性,一般条件下不易与其他化学物质发生化学反应。

NA催化剂是不是危险品?

不是,按功能主要有氧化催化剂、加氢催化剂、脱氢催化剂、氢甲酰化催化剂、聚合催化剂、水合催化剂、脱水催化剂、烷基化催化剂、异构化催化剂、歧化催化剂等

有的是危险品,有的不是。请指明是哪种催化剂。

如:

1、加氢催化剂一般用钯、铂或镍、钴、钼等载于氧化铝上,不是危险品

2、乙烯水合制乙醇,用硫酸作催化剂,硫酸是危险品

催化剂是几类危险品?

石油化工产品生产中的化学加工过程中,催化剂的品种繁多,按功能主要有氧化催化剂、加氢催化剂、脱氢催化剂、氢甲酰化催化剂、聚合催化剂、水合催化剂、脱水催化剂、烷基化催化剂、异构化催化剂、歧化催化剂等

有的是危险品,有的不是。请指明是哪种催化剂。

如:

1、加氢催化剂一般用钯、铂或镍、钴、钼等载于氧化铝上,不是危险品

2、乙烯水合制乙醇,用硫酸作催化剂,硫酸是危险品

汽车的蓄电池如何发电?

汽车上使用的蓄电池都是铅酸蓄电池,是一种将化学能转换成电能的装置,是可逆的低压直流电源。

它的作用是在发动机起动时,向起动机、点火系统等主要用电设备供电,以及在发电机电力不足时协助供电,同时还可以吸收电路中瞬间的过电压,以保护用电设备。

根据结构的不同,大致可以分为普通型蓄电池、免维护蓄电池、干荷电蓄电池以及胶体蓄电池,总体结构都是由极板、电解液、隔板和壳体这几大部分构成的。

铅酸蓄电池中的“铅酸”是指蓄电池中极板和电解液的材料。其中的“铅”是指极板的材料,极板又分为正极板和负极板,在正极板上是二氧化铅,在负极板上是纯铅。

所谓的“酸”是指电解液的材料,它是由纯硫酸和蒸馏水按一定比例配制而成的硫酸水溶液(密度为1.24~1.31克/立方厘米),具有一定的腐蚀性。

电解液的密度对蓄电池的容量和寿命有很大的影响,一般密度越高,蓄电池的充电量越足,冰点也越低,在寒冷的冬季也不会结冰;如果电解液的密度很低时,蓄电池的电量基本就放光了,此时的电瓶在寒冷的地区有结冰的危险。

蓄电池的工作过程就是这些“铅酸”相互转换的过程。在静止状态下,在正极板处,二氧化铅与硫酸作用生成带正电荷的铅离子沉浮在正极板上,使正极板具有2V的正电位。

在负极板处,纯铅电离为铅离子和电子,两个电子留在负极板上,使负极板具有约-0.1V的负电位;这样在正负极之间就形成了大约2.1V的电位差,这就是铅酸蓄电池能够建立起电动势的原理。

那么蓄电池在工作过程中,“铅酸”又是怎样转换的呢?

蓄电池在放电时,硫酸与正负极板上的铅和二氧化铅发生化学反应,生成了硫酸铅和水,在这个过程中有大量的电子从负极板流向正极板,从而形成了放电电流。

由于电解液中水分的增加,电解液的密度是逐渐下降的,放电越多,电解液的密度越低;随着反应的进行,极板上的硫酸铅越来越多,反应的速度越来越慢,放电也就越来越少了。

当极板上大部分被硫酸铅覆盖的时候,反应基本就终止了,这时候就是所说的“电放没了”,电解液的密度也下降到了最低。

蓄电池在充电时,在外界电源的作用下,极板上的硫酸铅还原成了纯铅和二氧化铅,电解液中的水还原成硫酸,同时有大量的电子从正极板返回负极板。

从而形成了充电电流;随着充电的进行,电解液中的硫酸越来越多,电解液的密度是逐渐增加的,充电越足,电解液的密度越高。

但是当极板上的硫酸铅全部转化完后,电解液的密度也达到了最高,此时如果继续充电,这些电就会电解水了,生成了氢气和氧气,这就是充电过程中蓄电池里面会“冒泡”的原因。

所以,铅酸蓄电池的充放电过程,其实就是蓄电池中硫酸与纯铅和二氧化铅的化学反应过程,在这个过程中会伴随着电解液密度的变化。因此检验电解液的密度就可以大致判断出蓄电池的充电状态,并且利用这个原理制作出了蓄电池电量指示器。

早期的蓄电池是开放式的,在每一个单格电池上都有一个通气孔,因此会有一部分电解液从这个孔中挥发出去,另外充电过程中产生的氢气和氧气也从这个孔中逸出,因此电解液会越来越少,使用中需要定期添加并调整电解液的密度。

后来人们研制出了免维护蓄电池,这种蓄电池的特点是采用了安全通气孔,在通气室中设置了氧化铝过滤器和钯催化剂,阻止内部硫酸蒸气的排出。

减少了腐蚀作用,并使化学反应中产生的氢离子和氧离子再结合,生成水返回电解液中,从而减少了水份的消耗。

免维护蓄电池的使用寿命较长,使用过程中不需要添加电解液,自行放电少,不需要补充充电,因此在轿车上得到广泛应用,并将逐渐取代现有的普通铅酸蓄电池。

这种铅酸电瓶最怕两件事:低温和过度放电。实践证明,当环境温度每升高1°C的时候,电池的容量也会相应的增加0.8%;反之,当环境温度降低1°C的时候,电池的容量也会对应的减少0.8%!

当气温低至-10°C时,电瓶的容量只有正常值的72%;当温度低至-20°C时,电瓶的容量只有正常值的64%。

另外,汽车电瓶都是浅充浅放的铅酸电瓶,过度放电是对电瓶的极大伤害。数据表明,当电瓶的电量完全放掉然后再充电,最多只能充到原来容量的80%。

所以,我们在日常使用中一定要避免这两种情况的发生,比如不要频繁的启动发动机,不要停车后大量使用电瓶的电能,等等。

文章末尾固定信息
weinxin
我的微信
微信扫一扫
magjs
  • 本文由 发表于 2023年3月18日 14:37:54
  • 转载请务必保留本文链接:https://www.magjs.com/50755.html